Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Med Oncol ; 41(6): 128, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656461

ABSTRACT

Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.


Subject(s)
Hematologic Neoplasms , Membrane Proteins , Humans , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematologic Neoplasms/immunology , Membrane Proteins/metabolism , Myeloproliferative Disorders/metabolism , Signal Transduction
2.
Gene ; 915: 148428, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38575099

ABSTRACT

To assess and validate the gene expression profile of SIRTs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7) in relation to the pathogenesis and prognostic progression of Myelodysplastic neoplasm (MDS). Eighty bone marrow samples of patients with de novo MDS were diagnosed according to WHO 2022 and IPSS-R criteria. Ten bone marrow samples were obtained from elderly healthy volunteers and used as control samples. Gene expression levels of all SIRTs were assessed using RT-qPCR assays. Downregulation of SIRT2 (p = 0.009), SIRT3 (p = 0.048), SIRT4 (p = 0.049), SIRT5 (p = 0.046), SIRT6 (p = 0.043), and SIRT7 (p = 0.047) was identified in MDS patients compared to control individuals. Also, we identified that while SIRT2-7 genes are typically down-regulated in MDS patients compared to normal controls, there are relative expression variations among MDS patient subgroups. Specifically, SIRT4 (p = 0.029) showed increased expression in patients aged 60 or above, and both SIRT2 (p = 0.016) and SIRT3 (p = 0.036) were upregulated in patients with hemoglobin levels below 8 g/dL. SIRT2 (p = 0.045) and SIRT3 (p = 0.033) were highly expressed in patients with chromosomal abnormalities. Different SIRTs exhibited altered expression patterns concerning specific MDS clinical and prognostic characteristics. The downregulation in SIRTs genes (e.g., SIRT2 to SIRT7) expression in Brazilian MDS patients highlights their role in the disease's development. The upregulation of SIRT2 and SIRT3 in severe anemia patients suggests a potential link to manage iron overload-related complications in transfusion-dependent patients. Moreover, the association of SIRT2/SIRT3 with genomic instability and their role in MDS progression signify promising areas for future research and therapeutic targets. These findings underscore the importance of SIRT family in understanding and addressing MDS, offering novel clinical, prognostic, and therapeutic insights for patients with this condition.


Subject(s)
Mitochondrial Proteins , Myelodysplastic Syndromes , Sirtuin 3 , Sirtuins , Humans , Sirtuins/genetics , Sirtuins/metabolism , Male , Female , Aged , Middle Aged , Myelodysplastic Syndromes/genetics , Prognosis , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Adult , Aged, 80 and over , Sirtuin 1/genetics , Sirtuin 1/metabolism , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods , Case-Control Studies
3.
Article in English | MEDLINE | ID: mdl-37543491

ABSTRACT

INTRODUCTION: Immune checkpoints are regulators of the immune system response that allow self-tolerance. Molecules such as Programmed Cell Death Protein 1 (PD-1) and its Ligand (PD-L1) participate in the immune checkpoint by signaling co-inhibition of lymphocyte responses. In cancers, PD-L1 expression is associated with the immune evasion mechanism, which favors tumor growth. The use of anti-PD-1/PD-L1 drugs is already well described in solid tumors, but still not fully understood in hematologic malignancies. Myelodysplastic neoplasms (MDSs) are heterogeneous bone marrow disorders with an increased risk of progression to Acute Myeloid Leukemia (AML). The MDS affects hematopoietic stem cells and its pathogenesis is linked to genetic and epigenetic defects, in addition to immune dysregulation. The influence of the PD-L1 on the MDS remains unknown. METHODS: In this study, we evaluated the mRNA expression of the PD-L1 in 53 patients with MDS, classified according to the WHO 2016 Classification. RESULTS: Patients with dyserythropoiesis presented significantly higher PD-L1 expression than patients without dyserythropoiesis (p = 0.050). Patients classified as having MDS with an excess of blasts 2 (MDS-EB2) presented a significant upregulation in the mRNA expression of the PD-L1 compared to the MDS with an excess of blasts 1 (MDS-EB1) (p = 0.050). Furthermore, we detected three patients with very high levels of PD-L1 expression, being statistically classified as outliers. CONCLUSION: We suggested that the high expression of the PD-L1 is associated with a worse prognosis in the MDS and functional studies are necessary to evaluate the possible use of anti-PD-L1 therapies for high-risk MDS, such as the MDS-EBs.

4.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373211

ABSTRACT

The aim of this study was to evaluate the expression of USP7, USP15, UBE2O, and UBE2T genes in Myelodysplastic neoplasm (MDS) to identify possible targets of ubiquitination and deubiquitination in MDS pathobiology. To achieve this, eight datasets from the Gene Expression Omnibus (GEO) database were integrated, and the expression relationship of these genes was analyzed in 1092 MDS patients and healthy controls. Our results showed that UBE2O, UBE2T, and USP7 were upregulated in MDS patients compared with healthy individuals, but only in mononucleated cells collected from bone marrow samples (p < 0.001). In contrast, only the USP15 gene showed a downregulated expression compared with healthy individuals (p = 0.03). Additionally, the upregulation of UBE2T expression was identified in MDS patients with chromosomal abnormalities compared with patients with normal karyotypes (p = 0.0321), and the downregulation of UBE2T expression was associated with MDS hypoplastic patients (p = 0.033). Finally, the USP7 and USP15 genes were strongly correlated with MDS (r = 0.82; r2 = 0.67; p < 0.0001). These findings suggest that the differential expression of the USP15-USP7 axis and UBE2T may play an important role in controlling genomic instability and the chromosomal abnormalities that are a striking characteristic of MDS.


Subject(s)
Myelodysplastic Syndromes , Neoplasms , Humans , Ubiquitin-Specific Peptidase 7/genetics , Myelodysplastic Syndromes/pathology , Chromosome Aberrations , Ubiquitination , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
5.
Leuk Res ; 129: 107071, 2023 06.
Article in English | MEDLINE | ID: mdl-37004280

ABSTRACT

Differentially expressed genes (DEGs) biomarkers can be used to help diagnose and monitor the disease, as well as to determine which treatments are most effective. So, given the complexity of Myelodysplastic neoplasm (MDS), it is difficult to determine the impact and disparities of DEGs between CD34+ HSC (hematopoietic stem cells) or primary bone marrow cells (PBMC) in MDS pathogenesis, and therefore it remains largely unknown. Here, we performed an in-silico transcriptome analysis on CD34+ HSC and PBMC from 1092 MDS patients analyzing the divergences between differential gene expression patterns in these two cell types as potential pathogenic biomarkers for MDS. Initially, we observed a difference of 7117 expressed transcripts between PBMC (n = 40,165) and CD34 +HSC (n = 33,048). Also, we identified that CD34+ HSC and PBMC samples showed 240 and 2948 DEGs, respectively. In summary, we identified DEGs disparities in CD34+ HSC and PBMC cell types. However, there was a certain similarity of the activated pathways in both cellular samples based on Gene Ontology and KEGG pathways enrichment analyses. Our results provide novel insights into novel DEGs biomarkers to MDS pathogenesis with clinical significance. AVAILABILITY OF DATA AND MATERIALS: All microarray databases were obtained from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). To evaluate the biological function of differentially expressed genes, the DAVID (Database for Annotation, Visualization and Integrated Discovery tool was used) (https://david.ncifcrf.gov/).


Subject(s)
Myelodysplastic Syndromes , Neoplasms , Humans , Transcriptome , Leukocytes, Mononuclear/metabolism , Neoplasms/complications , Antigens, CD34/metabolism , Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , Bone Marrow Cells/pathology , Myelodysplastic Syndromes/pathology , Biomarkers/metabolism , Computational Biology/methods
6.
Pathog Glob Health ; 117(5): 485-492, 2023 07.
Article in English | MEDLINE | ID: mdl-36316985

ABSTRACT

The state of Ceará, in the Northeast Region of Brazil, presents the simultaneous circulation of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses. In 2017 there were a high number of cases of these three arboviruses, especially CHIKV. Here, we detected the presence of arboviruses ZIKV, DENV and CHIKV and their coinfections in women in endemic regions of the city of Fortaleza, Ceará in a post-Zika epidemic year. Sociodemographic and environmental characteristics associated with arbovirus positivity were also analyzed. Women (n = 1289) between 15 and 39 years old were included. RT-qPCR was performed for virus detection and IgM antibody positivity was also analyzed. One hundred and six (8.3%) participants were positive for one or more arboviruses. Monoinfections (76; 5.9%) were distributed between 22 (1.7%) for ZIKV, 39 (3.1%) for DENV and 15 (1.2%) for CHIKV. Co-infections were detected in 30 (2.3%) of the positive participants and one case with triple infection was found. IgM positivity was found in 2.4% of ZIKV RT-qPCR, 9.6% of DENV and 16.3% of CHIKV. RT-qPCR positivity for arboviruses was associated with low socioeconomic class and presence of a water box sealing in the household. A higher positivity to the three viruses occurred in the month with the lowest wind velocity, which was also preceded by the highest peak of rain and humidity. We identified the simultaneous circulation and co-infection of ZIKV, DENV and CHIKV in Fortaleza in a post-Zika epidemic year. We also highlight the need for continuous epidemiological surveillance combined with molecular diagnostic tools.


Subject(s)
Arboviruses , Chikungunya Fever , Chikungunya virus , Coinfection , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Female , Adolescent , Young Adult , Adult , Zika Virus Infection/epidemiology , Chikungunya Fever/epidemiology , Brazil/epidemiology , Dengue/epidemiology , Coinfection/epidemiology
7.
Cancers (Basel) ; 14(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36230534

ABSTRACT

The sirtuins (SIRT) gene family (SIRT1 to SIRT7) contains the targets implicated in cellular and organismal aging. The role of SIRTs expression in the pathogenesis and overall survival of patients diagnosed with solid tumors has been widely discussed. However, studies that seek to explain the role of these pathways in the hematopoietic aging process and the consequences of their instability in the pathogenesis of different onco-hematological diseases are still scarce. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42022310079) and in silico analysis (based on GEPIA database) to discuss the role of SIRTs in the advancement of pathogenesis and/or prognosis for different hematological cancer types. In summary, given recent available scientific evidence and in silico gene expression analysis that supports the role of SIRTs in pathobiology of hematological malignances, such as leukemias, lymphomas and myeloma, it is clear the need for further high-quality research and clinical trials that expands the SIRT inhibition knowledge and its effect on controlling clonal progression caused by genomic instability characteristics of these diseases. Finally, SIRTs represent potential molecular targets in the control of the effects caused by aging on the failures of the hematopoietic system that can lead to the involvement of hematological neoplasms.

8.
J Clin Pathol ; 75(2): 85-93, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33234697

ABSTRACT

AIMS: DNA methylation has its distribution influenced by DNA demethylation processes with the catalytic conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). Myelodysplastic syndrome (MDS) has been associated with epigenetic dysregulation of genes related to DNA repair system, chronic immune response and cell cycle. METHODS: We evaluated the tissue DNA methylation/hydroxymethylation in bone marrow trephine biopsies of 73 patients with MDS, trying to correlate with the mRNA expression of 21 genes (POLH, POLL, REV3L, POLN, POLQ, POLI, POLK, IRF-1, IRF-2, IRF-3, IRF-4, IRF-5, IRF6, IRF-7, IRF-8,IRF-9, MAD2, CDC20, AURKA, AURKB and TPX2). RESULTS: The M-score (5mC) was significantly higher in patients with chromosomal abnormalities than patients with normal karyotype (95% CI -27.127779 to -2.368020; p=0.022). We observed a higher 5mC/5hmC ratio in patients classified as high-risk subtypes compared with low-risk subtypes (95% CI -72.922115 to -1.855662; p=0.040) as well as patients with hypercellular bone marrow compared with patients with normocellular/hypocellular bone marrow (95% CI -69.189259 to -0.511828; p=0.047) and with the presence of dyserythropoiesis (95% CI 17.077703 to 51.331388; p=0.001). DNA pols with translesion activity are significantly influenced by methylation. As 5mC immunoexpression increases, the expressions of POLH (r=-0.816; r2 =0.665; p=0.000), POLQ (r=-0.790; r2=0.624; p=0.001), PCNA (r=-0.635; r2=0.403; p=0.020), POLK (r=-0.633; r2=0.400; p=0.036 and REV1 (r=-0.578; r2=0.334; p=0.049) decrease. CONCLUSIONS: Our results confirm that there is an imbalance in the DNA methylation in MDS, influencing the development of chromosomal abnormalities which may be associated with the low expression of DNA polymerases with translesion synthesis polymerases activity.


Subject(s)
Chromosome Aberrations , DNA Methylation , DNA-Directed DNA Polymerase/genetics , Epigenesis, Genetic , Myelodysplastic Syndromes/genetics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , DNA-Directed DNA Polymerase/metabolism , Female , Humans , Immunohistochemistry , Karyotyping , Male , Middle Aged , Myelodysplastic Syndromes/enzymology , Real-Time Polymerase Chain Reaction , Young Adult
9.
Med Oncol ; 38(3): 27, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33594613

ABSTRACT

Toll-like receptors are mutated or overexpressed in up to 50% of patients with myelodysplastic syndrome (MDS). Endogenous retroviruses (ERV) trigger TLR3 leading to interferon regulatory genes (IRFs) activation. We evaluated if the ERVs-TLR3-IRF axis activation would be linked to MDS pathogenesis and we also conducted a detailed cancer analysis of the ERVs, TLR3 and IRFs gene expression in 30 cancer types using GEPIA database. Seventy-nine bone marrow samples from patients with MDS were evaluated for cytogenetics and quantitative real­time PCR of TLR3, ERVK6, ERVW-1, ERV3-1, IRF3 and IRF7. Patients with dyserythropoiesis showed higher TLR3 (p = 0.035), ERVK6 (p = 0.001), ERVW1 (p = 0.045) and ERV3-1 (p = 0.016) expression than patients without dyserythropoiesis. Upregulation of Interferon Regulatory Factors, IRF3 and IRF7, was associated with poor prognostic markers in MDS such as > 10% of blasts (p = 0.003-IRF3; p = 0.009-IRF7), low platelets count (< 50.000/mm3) (p = 0.001-IRF3; p = 0.021-IRF7), transfusion dependence (p = 0.014-IRF3) and chromosomal abnormalities (p = 0.036-IRF7). We found strong correlations between ERVK6-ERVW1 (r = 0.800; r2 = 0.640; p = 0.000), ERVW1-ERV3-1 (r = 0.715; r2 = 0.511; p = 0.000), and IRF7-IRF3 (r = 0.567; r2 = 0.321; p = 0.000) and moderate correlation between ERVK6-ERV3-1(r = 0.485; r2 = 0.235; p = 0.000), ERVW1-IRF7 (r = 0.389; r2 = 0.151; p = 0.001), ERVW1-IRF3 (r = 0.357; r2 = 0.127; p = 0.004), ERV3-1-IRF7 (r = 0.314; r2 = 0.098; p = 0.009), and ERV3-1-IRF3 (r = 0.324; r2 = 0.104; p = 0.007). Using GEPIA Database in 30 cancer types, we detected a typical pattern of upregulation as here presented in MDS. We suggest TLR3 activation by ERVs is linked to MDS pathogenesis leading to bone marrow failure. Abnormal double-stranded RNA (dsRNA) expression of Endogenous Retroviruses (ERV) triggers TLR3 hyperactivation. This induces IRF3, IRF7, and NF-kB to translocate to the nucleus and activate transcription of IFNα/ß which binds to the type I-IFN receptor promoting interferon response. Thus, just as TLR4 induces a crucial myeloid shift, the ERVs-TLR3 axis may play an important role in establishing one of the most striking characteristics in MDS, dyserythropoiesis.


Subject(s)
Biomarkers, Tumor/genetics , Endogenous Retroviruses/genetics , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Myelodysplastic Syndromes/etiology , Toll-Like Receptor 3/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Endogenous Retroviruses/metabolism , Female , Humans , Male , Middle Aged , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Prognosis , Toll-Like Receptor 3/metabolism , Young Adult
10.
Environ Toxicol Pharmacol ; 82: 103564, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33326828

ABSTRACT

Exposure to pesticides is considered a major factor underlying increased risk of hematological disorders in agricultural workers due to its carcinogenic potential. However, genotoxic impact of pesticides in DNA integrity of bone marrow stem cells (BMSC) of farmers exposed is not yet well known. We evaluated presence of chromosomal abnormalities (CA) and mRNA expression of DNA repair targets (ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6, LIG4, CSA, CSB, XPA, XPC, XPG) in 90 bone marrow samples of farmers divided into three groups: commercial farming (CF), family farming (FF) and organic farming (OF). Our results showed that farmers in CF (72.7 %) and FF (27.3 %) groups had significantly higher values of CA when compared to OF group (0.0 %; p = 0.003). CF showed lower XPG (p = 0.008), CSA (p < 0.001), ATM (p = 0.036) and LIG4 (p = 0.004) mRNA expression than OF. FF presented lower XPG (p = 0.012) and LIG4 (p = 0.004) expression than OF. CF + FF individual with ≥12 years of exposure to pesticides showed decreased mRNA expression of XPC (p = 0.001), XPG (p = 0.010), CSB (p = 0.05), ATM (p = 0.030) and LIG4 (p = 0.044) than those who have been exposed for <12 years. CF + FF with CA showed a lower expression of BRCA2 when compared to CF + FF group without CA (p = 0.007). These results highlight that genotoxic exposure to pesticides negatively affects expression profile of important DNA repair genes in BMSC, favoring irreparable chromosomal lesions.


Subject(s)
Chromosome Aberrations/chemically induced , DNA Repair/genetics , Gene Expression Regulation/drug effects , Mutagens/toxicity , Occupational Exposure/adverse effects , Pesticides/toxicity , Adult , Aged , Agriculture , Bone Marrow/metabolism , Brazil , DNA Damage , Farmers , Female , Humans , Male , Middle Aged , Young Adult
11.
Med Oncol ; 36(12): 99, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31667665

ABSTRACT

Cancer-specific defects in DNA repair pathways create the opportunity to employ synthetic lethality approach. Recently, GEMA (gene expression and mutation analysis) approach detected insufficient expression of BRCA or NHEJ (non-homologous end joining) to predict PARP inhibitors response. We evaluated a possible role of DNA repair pathways using gene expression of single-strand break (XPA, XPC, XPG/ERCC5, CSA/ERCC8, and CSB/ERCC6) and double-strand break (ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6, LIG4) in 92 patients with myelodysplastic syndrome (73 de novo, 9 therapy-related (t-MDS). Therapy-related MDS (t-MDS) demonstrated a significant downregulation of axis BRCA1-BRCA2-RAD51 comparing to normal controls (p = 0.048, p = 0.001, p = 0.001). XRCC6 showed significantly low expression in de novo MDS comparing to controls (p = 0.039) and for patients who presented chromosomal abnormalities (p = 0.047). Downregulation of LIG4 was consistently associated with poor prognostic markers in de novo MDS (hemoglobin < 8 g/dL (p = 0.040), neutrophils < 800/mm3 (p < 0.001), patients with excess of blasts (p = 0.001), very high (p = 0.002)/high IPSS-R (p = 0.043) and AML transformation (p < 0.001). We also performed an evaluation of GEPIA Database in 30 cancer types and detected a typical pattern of downregulation as here presented in primary or secondary MDS. All these results suggest synthetic lethality approach can be tested with DNA repair genes (beyond that of BRCA1/2 status) for de novo and therapy-related myelodysplastic syndrome and may encourage clinical trials evaluating the use of PARP1 inhibitors in MDS.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA Ligase ATP/genetics , DNA Repair Enzymes/genetics , Ku Autoantigen/genetics , Myelodysplastic Syndromes/genetics , Synthetic Lethal Mutations , Aged , Aged, 80 and over , Down-Regulation , Female , Humans , Male , Middle Aged , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
13.
Leuk Res ; 64: 61-70, 2018 01.
Article in English | MEDLINE | ID: mdl-29220700

ABSTRACT

Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology. We identified that CDC20 expression are increased in patients with dysmegakaryopoiesis (p=0.024), thrombocytopenia (p=0.000) and high-risk patients (p=0.014, 0.018) MAD2 expression are decreased in patients with 2 or 3 cytopenias (p=0.000) and neutrophil below 800/mm3. TPX2 is also overexpressed in patients presenting dysmegakaryopoiesis (p=0.009). A decrease in AURKA and AURKB expression were observed in patients with altered karyotype (p=0.000), who presented dysplasia in 3 lineages (p=0.000; 0.017) and hemoglobin inferior to 8g/dL (p=0.024). The expression of AURKA, AURKB and MAD2 (p=0.000; 0.001; 0.025) were decreased in patients with hypoplastic MDS, associated with high frequency of chromosomal alterations and high mortality rate. This study reaffirms the importance of aurora kinases and mitotic spindle genes to the pathogenesis and clinical evolution of MDS.


Subject(s)
Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Adult , Aged , Aged, 80 and over , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Kaplan-Meier Estimate , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Myelodysplastic Syndromes/mortality , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prognosis , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Transcriptome , Young Adult , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
14.
Leuk Res ; 58: 73-82, 2017 07.
Article in English | MEDLINE | ID: mdl-28472728

ABSTRACT

The association between Xeroderma Pigmentosum DNA repair genes (XPA rs1800975, XPC rs2228000, XPD rs1799793 and XPF rs1800067) polymorphisms and myelodysplastic syndrome (MDS) have not been reported. To assess the functional role between these polymorphisms and MDS, we evaluated 189 samples stratified in two groups: 95 bone marrow samples from MDS patients and 94 from healthy elderly volunteers used as controls. Genotypes for all polymorphisms were identified in DNA samples in an allelic discrimination experiment by real-time polymerase chain reaction (qPCR). We also studied the mRNA expression of XPA and XPC genes to evaluate if its polymorphisms were functional in 53 RNAm MDS patients by qPCR methodologies. To the rs2228000 polymorphism, the CT and TT polymorphic genotype were associated with increased odds ratio (OR) of more profound cytopenia (hemoglobin and neutrophils count). To the rs1799793 polymorphism, we found that the GG homozygous wild-type genotype was associated with a decreased chance of developing MDS. We observed low expression of XPA in younger patients, in hypoplastic MDS and patients with abnormal karyotype when presented AG or AA polymorphic genotypes. We also found that there was a statistically significant interaction between the presence of micromegakaryocyte on down regulation of XPC regarding the CT heterozygous genotype of the rs1800975 polymorphism. Our results suggest that new functional polymorphisms of Xeroderma Pigmentosum DNA repair genes in MDS are related to its pathogenesis and prognosis.


Subject(s)
DNA-Binding Proteins/genetics , Myelodysplastic Syndromes/genetics , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Adult , Aged , Aged, 80 and over , DNA Repair/genetics , Female , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction
15.
Leuk Res ; 48: 62-72, 2016 09.
Article in English | MEDLINE | ID: mdl-27497341

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell (HSC) malignances characterized by peripheral cytopenias and predisposition to acute myeloid leukemia transformation. Several studies show that the MDS pathogenesis is a complex and heterogeneous process that involves multiple steps through a sequence of genetic lesions in the DNA which lead to functional changes in the cell and the emergence and subsequent evolution of pre-malignant clone. Double strand breaks (DSB) lesions are the most severe type of DNA damage in HSCs, which, if not properly repaired, might contribute to the development of chromosomal abnormalities, which in turn may lead to leukemia development. We assessed the mRNA expression levels of ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6 and LIG4 genes in bone marrow samples of 47 MDS patients in order to evaluate the association with functional polymorphisms rs228593, rs4793191, rs9567623, rs1801320, rs3835, rs2267437 and rs1805388, respectively, and try to detect clinical associations. We found that the rs228593, rs2267437 and rs1805388 functional polymorphisms probably alter the level of expression of the ATM, XRCC6 and LIG4 genes, respectively, being important in the maintenance of genomic instability in MDS.


Subject(s)
DNA Repair/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Polymorphism, Genetic , Adult , Ataxia Telangiectasia Mutated Proteins/genetics , Bone Marrow/metabolism , DNA Damage , DNA Ligase ATP/genetics , Female , Genomic Instability/genetics , Hematopoietic Stem Cells/metabolism , Humans , Ku Autoantigen/genetics , Male , Middle Aged , RNA, Messenger/analysis
16.
Hematol Oncol ; 33(4): 220-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25312513

ABSTRACT

Some studies show that alterations in DNA repair genes polymorphisms are associated with the pathogenesis and susceptibility of Myelodysplastic Syndrome (MDS). We genotyped 60 MDS patients for six DNA repair gene polymorphisms: BRCA1 rs4793191, BRCA2 rs9567623, RAD51 rs1801320, XRCC5 rs3835, XRCC6 rs2267437 and LIG4 rs1805388. The G/C heterozygote genotype of rs1801320 polymorphism was associated with a decreased chance of developing MDS (p = 0.05). Additionally, the G/G homozygous genotype was associated with the presence of one cytopenia in whole blood. The genotype C/G and CG + GG of the rs2267437 polymorphism was associated with normal karyotype (p = 0.010) and bone marrow cellularity normocellular + hypercellular (p = 0.023). We found that the A/G heterozygous genotype of the rs3835 polymorphism is associated with decreased chance of developing MDS (p < 0.001). These results support the importance of RAD51, XRCC5 and XRCC6 genes polymorphisms in the maintenance of genomic stability promoting a better understanding of the genesis and etiology of MDS.


Subject(s)
DNA Repair/genetics , Myelodysplastic Syndromes/genetics , Aged , Aged, 80 and over , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...